Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Space Res (Amst) ; 39: 26-42, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945086

RESUMO

The Light Ion Detector for ALTEA (LIDAL) is a new instrument designed to measure flux, energy spectra and Time of Flight of ions in a space habitat. It was installed in the International Space Station (Columbus) on January 19, 2020 and it is still operating. This paper presents the results of LIDAL measurements in the first 17 months of operation (01/2020-05/2022). Particle flux, dose rate, Time of Flight and spectra are presented and studied in the three ISS orthogonal directions and in the different geomagnetic regions (high latitude, low latitude, and South Atlantic Anomaly, SAA). The results are consistent with previous measurements. Dose rates range between 1.8 nGy/s and 2.4 nGy/s, flux between 0.21 particles/(sr cm2 s) and 0.32 particles/(sr cm2 s) as measured across time and directions during the full orbit. These data offer insights concerning the radiation measurements in the ISS and demonstrate the capabilities of LIDAL as a unique tool for the measurement of space radiation in space habitats, also providing novel information relevant to assess radiation risks for astronauts.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Voo Espacial , Astronave , Atividade Solar , Monitoramento de Radiação/métodos , Doses de Radiação , Íons
2.
Radiat Res ; 176(3): 397-406, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21561339

RESUMO

The uneven shielding of the International Space Station from the vessel hull, racks and experiments produces a modulation of the internal radiation environment. A detailed knowledge of this environment, and therefore of the Station's shielding effectiveness, is mandatory for an accurate assessment of radiation risk. We present here the first 3D measurements of the Station's radiation environment, discriminating particle trajectories and LET, made possible using the detection capability of the ALTEA-space detector. We provide evidence for a strong (factor ≈ 3) anisotropy in the inner integral LET for high-LET particles (LET > 50 keV/µm) showing a minimum along the longitudinal station axis (most shielded) and a maximum normal to it. Integrating over all measured LETs, the anisotropy is strongly reduced, showing that unstopped light ions plus the fragments produced by heavier ions approximately maintain flux/LET isotropy. This suggests that, while changing the quality of radiation, the extra shielding along the station main axis is not producing a benefit in terms of total LET. These features should be taken into account (1) when measuring radiation with detectors that cannot distinguish the direction of the impinging radiation or that are unidirectional, (2) when planning radiation biology experiments on the ISS, and (3) when simulating the space radiation environment for experiments on the ground. A novel analysis technique that fully exploits the ability to retrieve the angular distribution of the radiation is also presented as well as the angular particle flux and LET characteristic of three geomagnetic zones measured during 2009 by the ALTEA-space detector. This technique is applied to the ALTEA-space detector, but a wider applicability to other detectors is suggested.


Assuntos
Anisotropia , Tolerância a Radiação , Voo Espacial , Animais
3.
Adv Space Res ; 33(8): 1347-51, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15803626

RESUMO

ALTEA-MICE will supplement the ALTEA project on astronauts and provide information on the functional visual impairment possibly induced by heavy ions during prolonged operations in microgravity. Goals of ALTEA-MICE are: (1) to investigate the effects of heavy ions on the visual system of normal and mutant mice with retinal defects; (2) to define reliable experimental conditions for space research; and (3) to develop animal models to study the physiological consequences of space travels on humans. Remotely controlled mouse setup, applied electrophysiological recording methods, remote particle monitoring, and experimental procedures were developed and tested. The project has proved feasible under laboratory-controlled conditions comparable in important aspects to those of astronauts' exposure to particle in space. Experiments are performed at the Brookhaven National Laboratories [BNL] (Upton, NY, USA) and the Gesellschaft für Schwerionenforschung mbH [GSI]/Biophysik (Darmstadt, FRG) to identify possible electrophysiological changes and/or activation of protective mechanisms in response to pulsed radiation. Offline data analyses are in progress and observations are still anecdotal. Electrophysiological changes after pulsed radiation are within the limits of spontaneous variability under anesthesia, with only indirect evidence of possible retinal/cortical responses. Immunostaining showed changes (e.g. increased expression of FGF2 protein in the outer nuclear layer) suggesting a retinal stress reaction to high-energy particles of potential relevance in space.


Assuntos
Íons Pesados , Retina/efeitos da radiação , Visão Ocular/efeitos da radiação , Animais , Adaptação à Escuridão , Eletrofisiologia , Camundongos , Camundongos Mutantes , Modelos Animais , Aceleradores de Partículas , Estimulação Luminosa , Doses de Radiação , Projetos de Pesquisa , Voo Espacial
4.
Adv Space Res ; 33(8): 1352-7, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15803627

RESUMO

The ALTEA project investigates the risks of functional brain damage induced by particle radiation in space. A modular facility (the ALTEA facility) is being implemented and will be operated in the International Space Station (ISS) to record electrophysiological and behavioral descriptors of brain function and to monitor their time dynamics and correlation with particles and space environment. The focus of the program will be on abnormal visual perceptions (often reported as "light flashes" by astronauts) and the impact on retinal and brain visual structures of particle in microgravity conditions. The facility will be made available to the international scientific community for human neurophysiological, electrophysiological and psychophysics experiments, studies on particle fluxes, and dosimetry. A precursor of ALTEA (the 'Alteino' project) helps set the experimental baseline for the ALTEA experiments, while providing novel information on the radiation environment onboard the ISS and on the brain electrophysiology of the astronauts during orbital flights. Alteino was flown to the ISS on the Soyuz TM34 as part of mission Marco Polo. Controlled ground experiments using mice and accelerator beams complete the experimental strategy of ALTEA. We present here the status of progress of the ALTEA project and preliminary results of the Alteino study on brain dynamics, particle fluxes and abnormal visual perceptions.


Assuntos
Encéfalo/efeitos da radiação , Radiação Cósmica , Luz , Retina/efeitos da radiação , Voo Espacial/instrumentação , Percepção Visual/efeitos da radiação , Ausência de Peso , Adaptação à Escuridão , Eletrofisiologia , Desenho de Equipamento , Meio Ambiente Extraterreno , Humanos , Monitorização Fisiológica , Fosfenos , Estimulação Luminosa , Monitoramento de Radiação , Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...